<< rcond linear algebra sqrtm >>

schur


Schur decomposition.


Syntax


T = schur(M)
T = schur(M, 'real')
T = schur(M, 'complex')
[U, T] = schur(M)
[U, T] = schur(M, 'complex')
[U, T] = schur(M, 'real')

Input argument


M

a numeric value: scalar or square matrix (double or single)

Output argument


U

unitary matrix

T

upper triangular matrix

Description


schur(M) computes the schur decomposition.

With the flag 'complex', the complex schur form is upper triangular with the eigenvalues of M on the diagonal.

If A is real, the real schur form is returned.

With the flag 'real', the real schur form has the real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.

Example


X = [1 2; 3 4];
[U, T] = schur(X)
[U, T] = schur(X * i, 'complex')
[U, T] = schur(X * i, 'real')

See also


eig.

History


Version Description
1.0.0 initial version

Author


Allan CORNET

<< rcond linear algebra sqrtm >>